
Types of Reactions

5 Main Categories

Helps us predict things about the reactions

Know the reactants?
You can predict the products

Know the products?

You can predict the reactants

Synthesis

Two things combining into one

Example:

$$X + Y \rightarrow XY$$

 $O_2 + C \rightarrow CO_2$

What to look for:

More reactants than products

Decomposition

One thing falling apart into two

Example:

$$XY \rightarrow X + Y$$

 $CaCO_3 \rightarrow CaO + CO_2$

What to look for:

More products than reactants

Combustion

Burning

Example:

Hydrocarbon +
$$O_2 \rightarrow CO_2 + H_2O$$

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

What to look for:

Reactants = Hydrocarbon and O_2 Products = CO_2 and H_2O

Single Replacement

Swapping one element

Example:

$$A + BC \rightarrow AC + B$$

 $2AI + 3Pb(NO_3)_2 \rightarrow 2AI(NO_3)_3 + 3Pb$

What to look for:

Reactants = 1 element and 1 compound Products = 1 element and 1 compound, but different ones

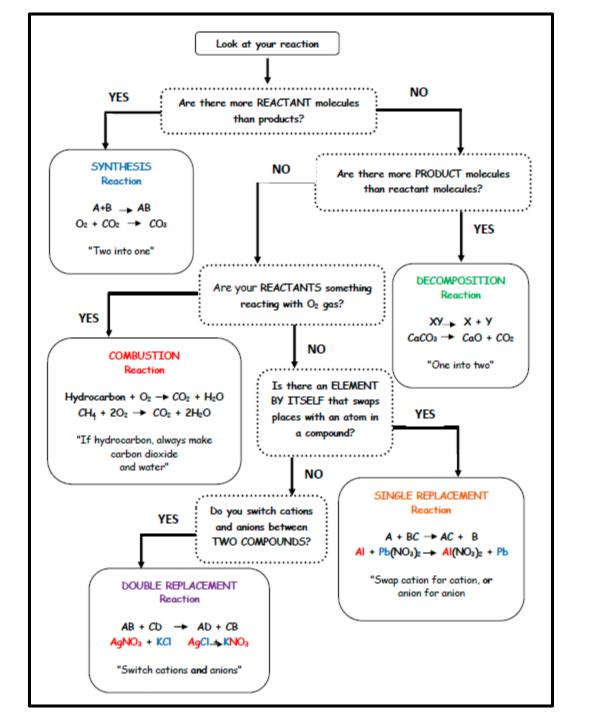
Double Replacement

Swapping two elements

Example:

$$AB + CD \rightarrow AD + CB$$

$$AgNO_3 + KCI \rightarrow AgCI + KNO_3$$


What to look for:

Reactants = 2 Compounds

Products = 2 Compounds but different ones

For Replacement Rxns

- If element is a cation, replace it with the other cation. If it is an anion, replace it with the other other anion
- All neutral compounds need to have a cation and anion when finished (IN THAT ORDER)
- You need NEW subscripts cross over FROM SCRATCH
- Careful about diatomic elements in single replacements – they need to be diatomic!

YouTube Link to Presentation:

https://youtu.be/RgKtc2vJ5cM